The (Me₂N)₂CO·SiCl₄ complex: the first case of ligand equatorial orientation in a trigonal bipyramide

Igor M. Lazarev,*a Yurii E. Ovchinnikov,b Gennadii V. Dolgushina and Yurii T. Struchkovb

The structure of the tetrachlorosilane-tetramethylurea complex suggested from NQR data is proved by X-ray crystallography; experimental data is compared with calculated values.

Previously, ¹ studying the complex formation of tetrachlorides of Group 14 elements by ³⁵Cl NQR spectroscopy, we have shown that in the trigonal bipyramidal complex (Me₂N)₂CO-SiCl₄ 1 the ligands occupy an equatorial position which is quite unexpected for complexes of this type. It is only recently that a SiCl₄ complex with an imidazole carbene derivative having the same equatorial ligand orientation has been reported.²

Continuing our studies, we carried out AM1, MNDO and PM3 quantum-chemical calculations with full optimization of geometry of the various structures of this complex (with axial and equatorial ligand disposition) and the initial components. We have also performed an X-ray study of this complex.[†] The results are presented in Tables 1–3.

As can be seen from Table 1, all calculations give stable structures 1 with equatorial and axial ligand orientations. However, AM1 provides a more stable axial position and positive enthalpy of complex formation. MNDO and PM3 calculations are in better agreement with experimental values and give a lower enthalpy of formation with a negative enthalpy of reaction value with equatorial orientation. The low reaction enthalpies are consistent with the fact that the formation of this complex is a reversible process. On heating the complex over 85% of the initial components was isolated, which is quite unexpected taking into account the fact that the

coordinated O-Si bond length is nearly equal to that of the covalent bond. The experimental enthalpies of similar reactions are close to the calculated values.³

PM3 proved to be the best method for comparison of geometry parameters (Tables 2 and 3) since it results in the least deviations from the experimental values.

Satisfactory correlations between the calculated and experimental energy and geometry parameters of compound 1 enable the donor–acceptor charge transfer to be evaluated (*ca.* 0.3–0.4 electrons depending on the calculation method) (Table 1).

As follows from the X-ray data, the main features of molecule 1 (Figure 1) are the presence of a hypervalent fragment and slightly abnormal electron density distribution. The Si atom coordination polyhedron (trigonal bipyramidal), is nearly symmetrical with respect to the equatorial plane (the Si atom is only 0.01 A displaced from the plane) and it is this form (axial Cl atoms and equatorial O and Cl) that has never been seen in the known structures of pentacoordinated organosilicon derivatives. The equatorial Si–O and Si–Cl bonds (Table 2) are 0.05–0.07 A longer than normal bonds in structures having pentacoordinated Si atoms. ^{4,5} It is likely that lengthening of this kind is typical of the pentacoordinated silicon atom with a strongly electronegative environment: in

Table 1 Enthalpies of formation (H) and enthalpies of reactions (ΔH) of equatorial (Eq) and axial (Ax) complex 1 structures, calculated by semiempirical methods, and charge transfer values (Δq).

Method of	$\Sigma H_{ m init.}$		Eq			Ax		
calculations		$H_{ m Eq}$	$\Delta H_{ m Eq}$	Δq	$H_{ m Ax}$	$\Delta H_{ m Ax}$	Δq	
AM1	-194.73	-187.06	7.67	0.2879	-197.48	-2.75	0.0378	
MNDO	-177.90	-183.70	-5.80	0.2906	-182.65	-4.75	0.2311	
PM3	-203.47	-212.76	-9.29	0.3915	-210.82	-7.35	0.2518	

[†] Crystal data for 1. Triclinic crystals, a = 6.641(2), b = 7.344(3), c = 12.788(4) A, $\alpha = 75.33(2),$ $\beta = 81.97(2),$ $\gamma = 82.97(2)',$ $V = 595.0(5) \text{ A}^3,$ $D_x = 1.597 \text{ g cm}^{-3},$ $Z = 2(C_5H_{12}N_2OSiCl_4),$ P1space group. The structure was solved by direct method and refined by the full-matrix least-squares procedure in an anisotropic approximation for non-hydrogen atoms and isotropic for H atoms localized in the difference synthesis. Corrections for absorption $(\mu = 10.7 \text{ cm}^{-1})$ were introduced by DIFABS program.⁸ The final divergence factor values are R = 0.042, $R_{\rm w} = 0.044$ basing on 1317 reflections with $I > 3\sigma(I)$. Coordinates and heat parameters are presented in Table 2. All the calculations were made on an IBM PC/AT computer using MOPAC 6.0 and SHELXTL PLUS programs. Y-ray diffraction experiment was performed at 180 K on a Syntex P2₁ diffractometer, Mo-K α , graphite monochromator, $\theta/2\theta$ scan, $2\theta_{\text{max}} = 46^{\circ}$. Full lists of bond lengths, bond angles, atomic coordinates and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre (CCDC). For details, see 'Notice to Authors', *Mendeleev Communications*, 1996, Issue 1. Any request to the CCDC for data should quote the full literature citation and the reference number 1135/10.

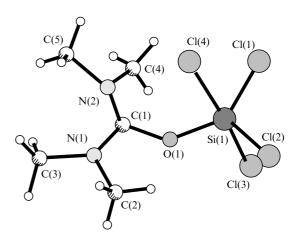


Figure 1 The structure of crystalline 1.

^a Irkutsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russian Federation. Fax: +7 3952 35 6046; e-mail: igor@irioch.irk.ru

^b A. N. Nesmayanay, Institute of Organical Courses (Course), Russian Academy of Sciences, 664033 Irkutsk, Russian Federation.

^b A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 117813 Moscow, Russian Federation. Fax: +7 095 135 5085

Table 2 Compound 1 bond lengths.

Bond	Bond length/A					
	Exp.	AM1	MNDO	PM3		
Cl(1) - Si(1)	2.073(3)	2.082	2.129	2.075		
Cl(2) - Si(1)	2.082(3)	2.075	2.130	2.073		
Cl(3) - Si(1)	2.176(3)	2.155	2.209	2.161		
Cl(4) - Si(1)	2.209(3)	2.278	2.205	2.392		
Si(1) - O(1)	1.696(3)	1.904	1.745	1.729		
O(1) - C(1)	1.338(5)	1.319	1.269	1.313		
N(1) - C(1)	1.322(5)	1.373	1.426	1.379		
N(1) - C(2)	1.468(6)	1.447	1.481	1.487		
N(1) - C(3)	1.481(6)	1.439	1.481	1.479		
N(2) - C(1)	1.311(5)	1.396	1.370	1.425		
N(2) - C(4)	1.463(5)	1.446	1.485	1.487		
N(2) - C(5)	1.471(7)	1.443	1.489	1.487		

the structures of four lactam derivatives possessing similar Si atoms⁶ with four O or Cl atoms present, the average length of the equatorial Si–Cl bonds is 2.0056 A, whereas the equatorial Si–O(Me) bond in one of the structures is only 1.680(2) A. A greater bond length in molecule 1 may be caused by further increasing the negativity of the Si atom environment. An analogous lengthening of the equatorial Si–F bonds in diorganyltrifluorosilicate anions⁷ with halogen atoms in the equatorial position should also be noted.

The present work was supported by the Russian Foundation for Basic Research (grant no. 95-03-08611).

References

- V. P. Feshin, G. V. Dolgushin, I. M. Lazarev and M. G. Voronkov, *Dokl. Akad. Nauk SSSR*, 1987, 295, 1415 (in Russian).
- N. Kuhn, T. Kratz, D. Blaeser and R. Boese, *Chem. Ber.*, 1995, 128, 245.
- 3 E. N. Guryanova, I. P. Goldshtein and I. P. Romm, *Donorno-aktseptornaya Svyaz (The Donor-Acceptor Bond)*, Khimiya, Moscow, 1973, p. 162 (in Russian).
- 4 V. E. Shklover and Yu. T. Struchkov, Usp. Khim., 1980, 49, 518 (Russ. Chem. Rev., 1980, 49, 272).
- L. N. Zakharov, M. Yu. Antipin, Yu. T. Struchkov, A. V. Gusev, A. M. Gibin and N. V. Zhernenkov, *Kristallografiya*, 1986, 31, 171 (*Crystallography USSR*, 1986, 31, 99).

Table 3 Valent angles (ω) of 1.

Angle ω	Angle ω/°			
-	Exp.	AM1	MNDO	PM3
Cl(1) - Si(1) - Cl(2)	116.6(1)	120.8	125.0	121.5
Cl(1) - Si(1) - Cl(3)	90.9(1)	95.2	92.1	97.0
Cl(2) - Si(1) - Cl(3)	92.5(1)	95.6	92.0	98.0
Cl(1) - Si(1) - Cl(4)	90.5(1)	91.1	91.9	88.1
Cl(2) - Si(1) - Cl(4)	90.9(1)	91.5	91.8	88.2
Cl(3) - Si(1) - Cl(4)	175.3(1)	166.3	171.5	168.3
Cl(1) - Si(1) - O(1)	126.0(1)	119.6	117.5	120.1
Cl(2) - Si(1) - O(1)	117.4(1)	119.3	117.5	116.6
Cl(3) - Si(1) - O(1)	85.9(1)	83.5	85.8	87.7
Cl(4) - Si(1) - O(1)	89.7(1)	82.8	85.7	80.1
Si(1) - O(1) - C(1)	132.7(3)	129.8	171.9	127.2
C(1) - N(1) - C(2)	121.8(3)	119.1	121.0	119.4
C(1) - N(1) - C(3)	121.9(3)	122.6	121.5	123.7
C(2)-N(1)-C(3)	116.3(3)	118.2	117.5	114.8
C(1)-N(2)-C(4)	121.3(3)	118.0	117.2	116.4
C(1)-N(2)-C(5)	121.8(3)	119.9	116.7	117.9
C(4)-N(2)-C(5)	115.3(3)	116.4	116.8	113.1
O(1) - C(1) - N(1)	116.2(3)	116.8	119.9	115.3
O(1) - C(1) - N(2)	119.3(3)	118.5	120.6	118.2
N(1)-C(1)-N(2)	124.4(3)	124.0	119.4	124.3

6

- Yu. T. Struchkov, Yu. E. Ovchinnikov, A. G. Shipov and Yu. T. Baukov, *Izv. Akad. Nauk, Ser. Khim.*, 1995, 1774 (Russ. Chem. Bull., 1995, 44, 1705).
- Chem. Bull., 1995, 44, 1705).K. Tamao, T. Hayashi, Y. Ito and M. Shiro, Organometallics, 1992, 11, 182.
- 8 N. Walker and D. Stuart, Acta Crystallogr., 1983, A39, 158.
- W. Robinson and G. M. Sheldrick, in Crystallographic Computing

 Techniques and New Technologies, Oxford University Press,
 Oxford, 1988.

Received: Moscow, 1st April 1996 Cambridge, 3rd May 1996; Com. 6/02468H